Bounding the Resource Availability of
Partially Ordered Events with Constant Resource
Impact

Jeremy Frank

Computational Sciences Division
NASA Ames Research Center, MS 269-3
frank@email.arc.nasa.gov

Moffett Field, CA 94035

Abstract. We describe a resource bounding technique calledrkbvw Balance
Constraint(F'BC) to tightly bound the amount of available resource for a set of
partially ordered events with piecewise constant resource impact. We provide an
efficient algorithm for calculating” BC' and bound its complexity. We compare
this technique with two existing resource bounding techniques, the Balance Con-
straint (BC) due to Laborie and the Resource Envelope)(due to Muscettola.

We prove that usindg’ BC' to halt search under chronological search with a static
variable and value order generates smaller search trees thanméther £.. We

also show thaF; and BC' are not strictly comparable in terms of the size of the
search trees generated under chronological search with a static variable and value
order. We then show how to generaliZd3 C to construct tighter resource bounds
but at increased computational cost.

1 Introduction

Scheduling requires ordering tasks while simultaneously satisfying temporal and re-
source constraints. Finding and maintaintegiporally flexibleschedules has numer-

ous advantages over finding a fixed-time schedule. Usually, scheduling is performed
assuming that the problem'’s characteristics are known in advance, do not change, and
that the execution of the schedule is deterministic. However, these assumptions are of-
ten violated in practice. For example, if events do not take place exactly when they
are scheduled, it may be costly to find a new schedule consistent with the actual event
execution times [4]. Techniques such as that described in [5] make it possible to ef-
ficiently update the flexible schedule once the precise timing of events are known. A
second advantage is that it can be less expensive to find flexible schedules because
fewer decisions need to be made; thus, less search is necessary. This is true for simple
temporal constraints, but the presence of resource constraints regfticest tight re-

source bounding techniquésdetermine that the resource constraint is always or never
satisfied.

It is straightforward to calculate the resource bounds of events whose execution
time are fixed. The task becomes more difficult when activities or events are not fixed
in time or are unordered, and more difficult still when events can have arbitrary impact
on resources. In the context of constructive search, early detection of success or failure
is often important to achieving good search performance. In this paper we focus on

the ability of resource bounding techniques to reduce the cost of constructive search
algorithms by means of detecting success or failure.

Following Muscettola [1], Laborie [2] has provided a simple but expressive formal-
ism for scheduling problems callé&esource Temporal Networ&TNSs). In this paper
we study RTNs consisting of 8imple Temporal NetworfSTN) as described in [3],
constant resource impacts (either production or consumption) for events, and piecewise
constant resource bounds; Laborie [2] refers to this subclas® a8o, STN7). There
are two existing techniques for bounding resource availability in such RTNs; the Bal-
ance ConstraintC) [6] due to Laborie, and the Resource Envelopg) (1] due to
Muscettola. These techniques are described in more detail in Sectititi f2atures an
efficient but loosely bounding approximation, whil& is more costly but provides a
tight bound (in all cases a schedule justifying the bound is proved to exist). Somewhat
surprisingly, these techniques are not strictly comparable in terms of the size of the
search trees generated under chronological search. We provide examples demonstrat-
ing this in Section 3. In Section 4 we describe #lew Balance Constrain(F' BC),
a novel synthesis of these two approaches. In Section 5 we prove thatgenerates
smaller proof trees than eithé&tC or E, under chronological search. In Section 6 we
describe the complexity of a naive algorithm to calculatBC. We then show how to
calculateF’ BC incrementally, thereby reducing its computational cost. In Section 7 we
then generalizé’ BC' in order to construct even tighter resource bounds but at increased
computational cost. Finally, in Section 8 we conclude and describe future work.

2 Previous Work

In this paper we will assume that time is represented using integéks will also
assume that the resource impact of each event is known when solving begins. We will
assume each RTN has only one resource, that there is one constrainand one
constraint> 0 on the resource. We also assume that the lower bound of the scheduling
horizon is0, and that- units of resource are available at tifie

The techniques we study are aimed at establisHalting Criteria (HC) for chrono-
logical backtracking search algorithms schedulers that maintain temporal flexibility. By
"halt” we mean identifying a leaf node in the chronological search tree. A scheduler
can halt if theNecessary Truth Criteriof2, 8] (NTC), is satisfied, namely, #ll feasi-
ble solutions of the STN also satisfy the resource constraints. The NTC is satisfied if the
upper bound on the available resource is always below the maximum available resource
r, and the lower bound on the available resource is always ab®&ehedulers can also
halt if nofeasible solution of the STN can satisfy the resource cons#aifis is true
if the upper bound on the available resource is ever bélow the lower bound on the
available resource is ever aboveOtherwise, the scheduler must continue search, i.e.
the current state is an interior node of the search tree.

We will use the following notation: LetV be the set of all events of an RTN and
n = [N|. Let X € N; ¢(X) denotes the resource impact®f If ¢(X) < 0 X is said
to be aconsumer; if ¢(X) > 0thenX is said to be groducer As defined in [1],X
anti-preceded” if X must occurs at or aftéy” (i.e. Y < X). A predecessor seif a
set of eventsS has the property that ik € S then every event” such that” < X is
also inS. A successor saif a set7 has the property that ik € 7 then every event
Y such thay” > X is also in7. Let R be an RTN and letA(R) be any procedure for
evaluating the HC. IfA(R) = T then the HC is true an& has a solution. I4(R) = F,
the HC is true andk? has no solution. IfA(R) =7 the HC is false and it is unknown
whetherR has a solution.

! This assumption can be relaxed, but leads to resource bounds holding over half-open intervals
of time.
2 One could refer to this as the Necessary Falsity Criteria (NFC).

2.1 The Balance Constraint

Laborie'sBalance Constrain{BC) [6] calculates bounds on the maximum and mini-
mum amount of a resource immediately prior to and immediately following the execu-
tion of an eventX. The STN is partitioned relative t& into the following sets: Before
B(X), Before or EquaB.S(X), EqualS(X), Equal or AfterAS(X), After A(X), and
UnorderedU (X). Note that the predecessor setXfis {B(X) U BS(X) U S(X)}

and the successor set &fis {A(X) U AS(X) U S(X)} These sets are then used to
calculate the following quantitie€:, . . (X') for the minimum available resource before

X occurs,Ly, ... (X) for the maximum available resource befoteoccurs,L; . (X),

for the minimum available resource aft& has occurred, and;’ .. (X) for the max-
imum available resource aftéf has occurred. A sample calculation: f, (X) =
{B(X)UBS(X)U{V € AS(X)UU(X)|e(V) < 0}} Thenzzepim(x) e(Z).is

a lower bound or..” . (X). The other bounds can be constructed in a similar manner.
There may be no schedule consistent with the temporal constraints resulting in these
calculated resource availabilities. The computational complexit@fis dominated

by the maintenance of arc-consistency of the STN.

2.2 The Resource Envelope

The Envelope AlgorithmE; [1] finds theenvelopeof an RTN, that is, the functions
from time to the maximund,,,..(¢) and minimumL,,,;,, (¢t) available resource. Events
are partitioned inta@”(¢), those that must have occurred hyP(t), those that are per-
mitted to occur at, andO(t), those that can’t occur until after The maximum avail-
able resource at a timg L. (t), corresponds to a schedule in which the events in
Prax(t) C {P(t)UC(t)} all occur before. To find the se\ P,,,...(t) C P(t) that con-
tributes toP,,,...(t), @ maximum flow problem is constructed using all anti-precedence
links derived from the arc-consistent STN. The rules for building the flow problem to
find L,,..(t) are as follows: all events i#(t) are represented by nodes of the flow
problem. If X > Y then the flow problem contains an akt — Y with infinite ca-
pacity. If ¢(X) > 0 then the problem contains an arc— X with capacityc(X). If
¢(X) < 0 then the problem contains an akt — 7 with capacity|c¢(X)|. To con-
struct the flow problem to find.,,,;,,(¢), if ¢(X) > 0 then the problem contains an
arc X — 7 with capacityc(X), and if¢(X) < 0 then the problem contains an arc
o — X with capacity|c(X)|. Examples of the flow problem construction are shown
in Figure 1. The maximum flow of this flow network matches all possible production
with all possible consumption in a manner consistent with the precedence constraints.
The predecessor set of those events reachable in the residual floW,js..(¢), and
APS (t) = {P(t)— AP,,4(t)}. The tightness of the bound is guaranteed by proving
that adding the constrainfs(,;, < t}VX € APp,q.(t) and{Yy, > t}VY € APS . (t)

is consistent with the original STN.

It turns out thatAP,,..(t) need only be computed at 2n distinct times. The
complexity of the algorithm described in [1] @&(n * MaxFlow(n,m) + n?), where
n = |[N] andm is the number of anti-precedence relationships in the arc-consistent
STN. In [7] this is reduced t® (M ax Flow(n, m) + n?) by taking advantage of the
order in which edges are added to and removed from a single maximum flow problem.
The crucial observation is that when computifigan event always move from open to
pending to closed and stays closed. As shown in Figure 1 (b) and (c), this guarantees
that events topologically "late” in the flow problem are removed, while topologically
"early” events are added to the flow problem. The insight is that the flow problem need
not be solved anew; the previous flow calculation can be reused, thereby saving a factor
of n. As an aside, a more general incremental maximum flow algorithm is given in [9],
but it doesn’t assume any particular order of flow arc additions and deletions.

4

3 Examples of Non-Domination

Muscettola previously demonstrated tliatcan prove the HC is satisfied in cases where
BC cannot. In this section we provide an example whEydails to prove the HC is
satisfied in cases whetBC can. The consequence of this is that neither algorithm
"dominates” the other when used solely to halt search. Sicerovides the tight-

est possible mapping from time to minimum and maximum resource availability, it is
somewhat surprising thdi; fails to dominateBC.

3.1 BC Doesn't Dominate E;

Muscettola [1] describes an RTN for whid®C' cannot not prove the HC is satisfied
but E; can. This example is modified and reproduced in Figure 1. Initially the resource
has2 units available BC will calculate L, . (A) as follows:U(A) = {W, X,Y, Z}
and A(A) = {B,C,D}. It assumed¥V andY occur beforeA, and thatX and Z
occur afterA. SinceL; . (A) = —1, BC concludes that more decisions are needed.
Clearly, this schedule is not consistent with the original STN, so the bound calculated
by BC is "loose”. The E; algorithm is able to prove that the HC is satisfied in this
case by determinind..,.;,(t) > 0 and L,,..(t) < 2 over the scheduling horizon.

As a case in point, considér,,;,, (10). The pending seP(10) = {B,C,D, X,Y,Z}

and the resulting flow problem is shown in Figure 1 (c). The maximum flow for this
network saturates the arcs@andY . No events are reachable in the residual graph, so
10) = 0. We see thal.,,,;,(10) = 0 sinceA andW are closed at0.

m(LT(

(a) Resource Temporal Network with (c) Flow to find AP (9).

2 units of resource initially available. A ""W
NBA 11,11 /8N 0.1 NCA 11,11 -/ 1/‘;‘°°W
<[1,10],-1> <[2,11],+1> <[2,11],-1> <[3,12],+1> @,1& §/§>

W oo NA 1A, | A

[+
<[1,10],-1> <[2,11],+1> <[2,11],-1> <[3,12],+1> KQ_W/

(b) Envelope Bounds. (d) Flow to find AP . (10).

min(

Aoo
: L. (1) 1 «
Sl e Gﬁ]
4912 1 12 1&00 ;3)

Fig. 1. An RTN for which BC fails to detect that the HC is true because a solution exists.

3.2 E; Doesn’'t Dominate BC

Figure 2 describes an RTN for whicdBC' can show that the HC is satisfied. Again,
initially the resource ha3 units available. In this case, sinédf D) = {A, B,C} and
{BS(D)UU(D)} =0, BC willfind L,,. (D) = —5. This proves that, no matter what
additional constraints are imposed, the resource bound will be violated. By cofiyast,
cannot conclude that the HC is satisfied. We see thahdC' can be postponed until
time 10, and A can be scheduled as early Bsleading toL,,,.(1) = 3. At time 2,

D could occur, but maximizing resource availability would then require scheduling

everything befor@ with a resource availability af being the result. At tim& we can

still find a schedule in whichl occurs before all other events, with resource availability

3; SO Limax(2) = 3. At time 10, however, both consumption evensand C' must

have taken place; in order to maximize the available resouireaust occur, leading to
Lynaz(10) = 0. FurthermoreL,,.;,, (t) provides no assistance in proving the HC is true.

Not only doesF; fail to show that the HC is true, there are non-trivial ordering decisions
that can be made; in the worst case, schedulers could spend a considerable amount of
time fruitlessly continuing the search from states like the one shown in Figure 2.

(a) Resource Temporal Network with (b) Envelope and Balance
2 units of resource initially available. Constraint upper bounds
>
Lnax® Lax (A)
,,,,,,,,,,, ‘ <
3| ! 3 ‘€ Lmax B)
%ﬁ <
N T
<[1,10,+1> i L A
RRRGRE) | max (A
O 0 e<«—L (D)
04 2 10..20_, LTS g
[1,10] A ! » I max>()
. 2| b L (€)
<[1,10], 4>[1‘10]<[2’20],+5> ol 3 max
-4 i i -4
50 P Llgp® -0 5 e@«—L <D
<[1,10],-4> o LM 5 max (°)

Fig. 2. An RTN for which E; fails to detect that the HC is true because no solution exists.

4 A Better Check for the Halting Criteria

In order to halt search more effectively than eittgror BC, we adopt a synthesis

of both strategies. We use the same partition of events used by Laborie [6]. Like La-
borie, we then find bounds oh;,,. (X), L5, (X), Ly ..(X), and L . (X). Like
Muscettola, we build a maximum flow problem whose residual graph is used to con-
struct the supporting sef3;;, . (X), P, (X), P;,.(X),andP; . (X). The rules for
constructing the flow problem are identical to those for calculafipgonly the set of
events defining the flow problems are different. To fih&y; . (X) andAPS, (X), we
solve aflow problem over the set of evet§ (X) UU (X). In these case$)s,. (X) =
{A 'ma:r) ()} and min() = {A min() ()} We defln%P’rﬁ(?r() -
{BS(X)UU(X)}~AP5,,(X)} andAPSS (X) = {{BS(X)UU(X)} - APy, (X)}

To find AP;,.(X) and AP, (X), we solve a flow problem over the set of events

max

AS(X)UU(X). In these caseshz, (X) = {AP7,, (X) US(X)UB(X)UBS(X)}
andP;,, (X) = {AP2, (X)U S(X) U B(X) UBS(X)). We defineAP;C. (X) =

min max

{{AS(X)UU (X))~ AP, (X)} andAP;S (X) = {{AS(X)UU(X)}- APy, (X)),
These supporting sets define schedules that prove the bounds are tight. For exam-

ple, the resulting sePy, . (X) defines an STN constructed by adding the constraints
YV € P (X){V < X}andvV € PsC (X){X < V}. We call the new procedure
the Flow Balance Constrain{F' BC), since it combines the features of the Balance
Constraint with the flow-based approach. For each e¥ewe must calculate bounds;
however, the actual number of bounds calculations i4n, since we observe that the

same bounds applyV’ € S(X). The algorithm forF BC is described in Figure 3. As

is done in [6], we maintain the partition of the STN relative to each exeduring the
arc-consistency enforcement phase.

FBC(R)
Enforce Arc Consistency oR
Maintain event-centric partitions
for each evenX ¢ N
Set up flow problems

Bound(X)
end for
end
Bound(X)
Find AP, (X) C BS(X)UU(X)
Linaa(X) =3 veqars, couseo) V)

Find APS,, (X) C {BS(X)UU(X)}

Ly (X’)mn Ve{APS. (X)UB(X)} c(V)
Find APZ,.(X) C {AS(X)uU(X)}

min

Limaz(X) = Ve{APZ, . (X)UB(X)UBS(X)US(X)} (V)

Find AP, (X) Cc {AS(X)UU(X)}

Loin(X) = VE{AP>, (X)UB(X)UBS(X)US(X)} (V)
end

Fig. 3. A sketch of the Flow Balance Constraint.

We now prove that the resulting bounds on quantitiesfigg . (X) are tight. To do
so, we first show that there is at least one schedule justifying the bound, and then show
that there is no better bound than that found using the flow problem.

Theorem 1. Let R be an RTN andX be an event inR. SupposeAPy,.(X) # 0.
Let R’ be the STN formed by adding the following constraint®td V' < X} for all
V € AP5 .. (X)and{X < W} forall W € AP:C (X). ThenR' has at least one

temporally consistent solution.

Proof. SinceV € {BS(X)UU(X)} the imposition of a single constraint alone doesn’t
make the STN inconsistent. Imposing a constrdink X can only decreas¥,; or
increaseX;;,. Since APy, (X) is a predecessor set, dlV < X} can be imposed
simultaneously without impacting consistency. Imposing a constiaift & can only
decreaseX,,;, or increasé/,. SinceAPC (X) is a successor set, dIX < W} can

also be imposed simultaneously without impacting consistency. Firlig, the only

event whose bounds are acted on by both classes of constraint. Consider two events
A,B. SinceA € AP, (X)andB € APSC (X) we know it can't be the case that

B < A. Butthen eitherd < B or A andB can be ordered in any way, and we already
know X can be ordered any way with respectd@r B. Thus,A < X < Bis possible

and no such ordering prevents other linearizations with respect to

Theorem 2. Let R be an RTN and(be an event irk. Suppose\Pys,...(X) # 0. Then
> vears,. (x)up(x) ¢(V) is the maximum possible value bf, ., (X).

Proof. Since we construct the flow problems in exactly the same way as [1], we state
this as a corollary of Theorem 1 of [1]1

The proofs for the tightness of the bounds by, (X), L, (X) andL; . (X),
are similar.
4.1 Discovering Constraints With F BC

The calculation ofF' BC allows the inference of new bounds on temporal constraints
and new precedence constraints on events in a manner simibar {6]. We know that

LX) =2 verars,. xyupx)y ¢(V). SUPPOSE 1 (X) > 0,743 v cpxy (V) =
d < 0 and that there is a predecessorBet APy, (X)suchthad (V) < |d|.
If X occurs before or at the same tinkeends, then the resource constraint will be
violated. Lett be the earliest end time of all such sets. Thenl is a valid new lower
bound forX, i.e. X, > t. If |APy;,..(X)| = k, calculating} . » ¢(V') and the earli-
est end time for every predecessor set of every event requit@s®) since we already
store the precedences to create the flow graphs. We can also tighten the botipd on
Suppose there is a predecessorBstch thatAPy, (X) C P C {BS(X)UU(X)}
and) . .pc(V) < |d|. If X occurs at the same time or afterends then the resource
constraint will be violated. Let be the latest ending time of all such sets. Thenl is
a valid upper bound o, i.e. X, < t. If [APS, (X)| = k, calculating" . p ¢(V)
and the earliest end timefor every predecessor set of every event requirés’). Sim-
ilar arguments allow bounding using AP, (X) when} -y 55y c(V) > r as well
asAP.. (X)andAP;, . (X).

Inferring precedence constraints is a little trickier. Again, suppesEVeB(X) (V) =
d < 0. Imposing the constraink < Y doesn’t impactB(X) but may lead to a
new set defining the maximum available resource, dendt&(_(X). Suppose that
Y € BS(X)UU(X)suchthatX <Y = r + ZVE{AP,;fm(X)UB(x)}C(V) < 0.
Then we can safely impose the precedence constfaint Y. It is sufficient to find
Y € APy, (X) such that its successor s§tC APS,.(X) has the property that
> ve(ars.,. (x)—s3 ¢(V) < |d|. Under these circumstances,Xf occurs beforeY’,
then the remaining events it Py (X) cannot offset the events iB(X).

Imposing the constraint” < X may lead to a newB’(X). Suppose thalY €
{BS(X)UU(X)-APy,.(X)}suchthat” < X = T+ZVE{AP,/”<M(X)UB/(X)} (V) <
0. Then we can safely impose the constréaint X. It is sufficient to findY” such that
its predecessor setC {BS(X)UU(X)} has the property thatt> "y o 5 x)usy (V) =

e<0 andZVe{AP,iw(X)mS} c(V) < lel.

A Resource Temporal Network. Assume the resource bound is 2. For this

RTN, AP, . (C) = {F.G,H}.

/o5 11 /8N 1411 =7
<[3,11],+1> <[4,12‘L\+1> <[5,13],+1>

\
\

C can't occur strictly before G [0,%0]
without violating the resource
constraint so we can infer G<C. \\

B2 00 S0 A

<0,10,-2> <[1,11]-2> <[2,12],-1>

Fig. 4. Inferring new precedence constraints wRiBC'.

If |APS..(X)| = k caleulating} >y c ap< (x)_gc(V) for every successor or

predecessor set requir@sk?) since we already store the precedences to create the flow
graphs. Similar implied precedences can be discovered using the other bounds. To see
how this works, consider Figure 4. In this ca& ... (C) = {F, G, H}. The successor

set of G is {G, H} andr + 3y ¢ p(c)y = —2. We see that allowing” to occur
beforeG would lead to a resource constraint violation, since the only event remaining

in APS,.(C)is F it producesl, which is not enough to offset+ >y, 5)y = —2.
In this case we can infer a new precedence consttaiatC'.

Note that if we relax the assumption that event resource impacts are known and
allow schedulers to choose resource impacts, we can also infer restrictions on resource

impacts asf3C does [6].

4.2 RelatingE, and FBC

In this section, we formally establish the relationship between the intervals over which
the F'BC andF; bounds hold. Suppose we find a £, .. (X) that supportd.;, .. (X).
What is the interval of time over which this value hoIdB,?m(X) is the maximum
available resource befor& occurs assuming that we impose the constraififs €
Ps..(X){V < X}andVV € PsC (X){X < V} to get a new RTNR'. Note that
the new unordered sét'(X) = (), andBS’(X) = (), and the new closed s& (X) =
{P5..(X)UB(X)}. Ly, (X) can be the resource availability no earlier tHgh =
maxy e p/(x) Vip- FOrcing events to precedé does not change their earliest start times.
However, forcing events to follo® may lead to a new upper bound &r, X,,,-. Thus,
L5, 02 (X) = Limao (t) over the intervalVj;, X,y — 1]. An example is shown in Figure
Now suppose we find a sét.,,..(X) that supportd.. .. (X). This bound assumes
that we impose the constrainty” € P (X){V < X} andVV € P (X){X <
V'} to get a new RTNR'. Note that the new pending s&t(X) =), and{B’(X) U
S (X)uBS'(X)}=P;,.(X). L .. (X) can be the resource availability no later than
Wi, = miny, ¢ p>c) Wy Forcing events to followX” does not change their upper
%orcing events to precedemay lead to a new lower bound;, .

bounds. However,
thatZ; . (X) holds. ThusL;, .. (X) = Ly,q. (t) over the interval Xy, , W, — 1].

max

We now can demonstrate the relationship betwiegp, (¢) and the bounds, . . (X), L, . (X)

max max
andL,,;, (t) and the bounds 5, (X), L, ... (X). The simplest result would be to prove
that one of the event bounds holds at all times and show how to construgtt) from
the event bounds; unfortunately, we do not prove this. However, we can generate the en-
tire time-based profild.,,...- (t) after imposing the temporal constraints for each event

bound and use this to show a resource bound for all times.

Theorem 3. If Ly, .. (X
Lypaz(t). If L7 .. (X) holds over the intervalz,y| thenVvt € [z,y|L mm(
Linas(t). If L5, (X) holds over the intervdle, y] thenVt € [z, y| Ly, (X) < Liin

If L. (X) holds over the intervale, y] thenVt € [x,y] L., (X) < Lyin(t).

min

) holds over the intervalz, y] thenVt € [z, y]L5,

min (

Proof. The paragraph above describes the intervals over witjich.(X) andL; .. (X)
hold. By introducing temporal constraints we only eliminate feasible schedules; the rest
follows immediately from the definition af,,..(t) and Theorems 1 and 2. The proofs

for the other event-centric bounds are similtar.

5 Dominance

In this section we will describe our dominance criteria and show 2 dominates

E; and BC; we do not formally show thaBC and E; do not dominate each other,
relying on the intuition of Section 3 to adequately demonstrate this. In order to motivate
our definition of dominance, suppose that some proceduieused to check the HC

in a chronological search framework with a static variable and value ordering heuristic.
Then we would liked to dominateB if A leads to smaller search trees than ugihg

Definition 1. Let R be an RTN. LeT’(R) be the set of all temporally consistent RTNs
that can be formed fron® by adding temporal constraints 8. Let A, B : T(R) —
{T,F,?} LetU4s(R) = {S € T(R)|A(S) =7}. ThenA dominatesB on R if U4(R) C
Ugp(R). A dominatesB if 3R such that4d dominates3 on R and there exists n§ such
that B dominatesd on S. We writeA < B or A < B as appropriate.

(a) A Resource Temporal Network with Pmax<(X) ={A,B} and PmaX<C(X) ={C}.

AN/ N

<[8,5],+a> <[2,16],+b> <[1,8],-c>

<[1,10],4+x>
(b) The Resource Temporal Network supporting LmaX<(X). The latest lower bound of
~(

any event in Pmax<(X) is 3. The new upper bound of X is 8, so Lmax

the interval [3,7].

X) holds over

Lmax<(x)

° 7
<[3,5],+b> [[11”:]])&[o,w] W

K qapexs A8l
<[2,7],+a>

Fig. 5. Deriving the time intervals over which resource availability bounds hold. The example
shows the calculation fak 5, ., (X).

Theorem 4. FBC < BC.

Proof. Theorems 1 and 2 show that the flow construction guarantees the tightest possi-
ble bounds orL;, .. (X), L, 0o (X), L5, (X) @andL; . (X) for anyRTN. Thus there

can be naS such thatBC' <g FBC. The example shown in Figure 1 shows at least
one RTNR for which FBC' <r BC'. This completes the proaf]

Theorem 5. FBC < E;

Proof. Theorems 1, 2 and 3 shows that there is no Bér which E; <5 FBC. The
example in Figure 2 shows that there is at least one RIfdr which FBC' <g E;.
This completes the proofl

6 Complexity of Calculating FBC

A naive algorithm for calculating® BC' builds a new flow network for each event

X € N. An equally naive analysis of the complexity of this algorithmGgn =
MazFlow(n,m) + n?), wherem is the number of anti-precedence relationships in
the RTN. However, this analysis is unsatisfactory for a number of reasons. Consider
the RTN in Figure 1. The flow networks required to calculatBC areidentical for

A, B,C, D becausé(A) = S(B) = S(C) = S(D) . Additionally, the flow networks
include only a small fraction of the nodes in the RTN; strict precedences and equalities
among events will generally reduce the size of the flow problems. These observations
suggest it might be possible to improve upon the bour@(@f« M ax Flow(n, m)+n?)

to calculateF' BC.

6.1 A Nontrivial Lower Complexity Bound

In this section we provide Bbwer bound on the complexity of the naive approach to
calculatingF’ BC'. We do so by constructing an RTN such that the flow problem to solve
for each event is both non-trivial and distinct. The RTN is a "square” graph fith
events per side. We index events by row and column in the square. The RTN has the
following strict precedencesi, j) < (i+1,7), and(4,j) < (4,5 + 1) (obviously omit-

ting those links for which the indices are outside the boyfids/n]. By construction,
P((4,5)) = ((z,y)|z > iAy < j)U((u,v)|u < iAv > j). Thus, all of the flow graphs

10

are distinct and nontrivial. Notice that we can assigX) arbitrarily to the events of
the RTN, as long as they are all non-zero and there is a mix of consumers and producers.
This RTN is shown in Figure 6.

P(3,3)/v g:g
@y

i

(b) The pending set for node (3,3).

O— P(2,4)
(a) Worst-case RTN. /
@)

(c) The pending set for node (2,4).

Fig. 6. A perverse RTN providing a worst-case lower bound for calculafiigyC'.

We now proceed to construct a lower bound on the complexity of the naive approach
for calculatingF BC on this RTN. By construction we have guaranteed that no "quick
fixes” can be used to decrease the complexity. The larger of the two induced flow prob-
lem for event(s, j) containsmax((i — 1)(y/n —j — 1), (j — 1)(y/n —i — 1)) events,
and at least this many flow arcs (we could do an exact count but it isn’t necessary since
we're providing a lower bound.) Let us now assume we are using a FIFO preflow-push
algorithm to solve each flow problem [10]; this ignores any efficiency gained from an-
alyzing the pushable flow, but is also suitable for our purposesidfthe number of
nodes in the flow problem, there are at leagtdges, and so the complexity of solving
the flow problem is2(v?-%). Using these assumptions the total complexity of solving
all the flow problems is

Vi Vn
< Z;Z;m‘cm((i ~D(Wa—j-1,(-)n—i-1)>°

First, we simplify the sum to get a lower bound:
Via—1y/n—1
< Y Y (iVn—4)*°
j=0 =0

We next approximate the sum with the integral (which, while bounding above, is
close enough for our purposes):

w£f1<LflmwlﬁF%O@

The first integral with respect tois trivial. For the second integral we have

/W-qﬂwem%—ﬁﬁcgfq

Collecting terms we have

N 3.5
)))) _ 1)3.5 \/ﬁ 1
-1 —j—1),(j—1 —i—1))?% < (v E——
> 3 w1 G- (i) < (Y5 U
Collecting the high order positive powers gf we see that the naive algorithm has
alower bound?(n3-5). Thus, for preflow-push flow algorithms using FIFO queues, the
naive algorithm forF BC requires2(n x Max Flow(n,m)) for solving the flows.

6.2 Incrementally Calculating FBC

As stated previously, the incremental technique described in [7] shaves a faatoffof

the cost of calculating?;. To do so, the incremental approach relies on restricted mod-
ifications of the flow problem. I is in the flow problem, it may be removed if it has

no successors other than the sink remaining in the flow problemijsfnot in the flow
problem, it may be added if it has no predecessors other than the source in the flow prob-
lem. This provides some hope that we can find a way to eliminate the factdeafra”

cost for calculating” BC' that we described in the previous section. Unfortunately, this

is not the case. The crucial element of the complexity analysis in [7] requires that an
event always move from open to pending to closed. We show that naively applying the
incremental algorithm may result in a non-trivial number of events moving from closed
to pending, thereby defeating the cost-savings measures. Consider the RTN described in
Figure 6. The longest chain of eventsi$,/n), and there ar€®(,/n) chains of events

we must solve for which the incremental approach cannot save any computation. Each
of these induces a total complexity 6 M axFlow(n,m)). Thus, for this problem,

even the incremental approach to solving flow problems customized fafttaégo-

rithm cannot reduce the complexity 61BC below 2(\/n *+ MazFlow(n,m) + n?).

We can take advantage of the incremental flow calculation by judicious ordering of
the bounds we calculate for an eveXit For example, to findAPy,..(X) we solve a
flow problem ove BS(X)uU (X)}. TofindAP_,.(X) we solve a flow problem over
{AS(X)UU(X)}. The change in the flow problem to be solved allows the incremental
approach to be used; thus, we can use the solution of the flow that giveBfis, (X)
in order to findAP_ .. (X). The total complexity of solving both flow problems is
O(MazFlow(n,m)) wheren andm are derived from the anti-precedence graph on
{BS(X)UU(X)UAS(X)}, this is cheaper than solving both flows separately as long
asU(X) # 0.

We can also take advantage of the incremental flow calculation by storing and
reusing flow calculations and ordering the bounds calculations for different events. Sup-
poseZ € {BS(X)U S(X)}, we are calculating the bounds faf and Z’s bounds
were previously calculated. Thed € BS(Z) must be either inB(X) or BS(X)
andB € U(Z) must be either ilB(X), BS(X) or U(X). This fits the conditions re-
quired to use the incremental approach by reusing the solution to the flow problem on
{U(Z) U BS(Z)}. If we hadcachedthis solution, we could then retrieve it and reuse
it in time proportional to the number of previously stored flow calculations. We can
generate an event ord&f(X) using a Depth-First Search through the anti-precedence
graph on all of the events to ensure that we can take advantage of incremental calcu-
lations. We call the resulting algorithtiBC' — DF'S, and it is described in Figure 7
below. As before, we need to calculate bounds for only one eX¥eatS(Y).

Obviously, the cost of'BC' — DF'S depends on the DFS traversal used to order
the bounds calculations, as described in the next result.

Theorem 6. Let R be an RTN withn induced anti-precedence constraints in its STN
S. LetII be an ordering induced by a DFS traversal of the anti-precedence graph on
letw be the number of leaves of the traversal and Ie¢ longest path in the traversal.
Then AlgorithmFBC — DF S takesO(w x MazFlow(n,m)) + n? time, and takes
O(Ilm) space.

12

FBC-DFS(R, I1(X))
Enforce Arc-Consistency oR
Maintain event-centric partitions
Fmaz — P'min — @
for each eveniX; € I1(X)
Find the latesX; € I1(X) such thatj < i, X; € B(X;) UBS(X;) U S(X;)
if Xj 7& Xi 1 POmeaz andme to X]'
Inc-Bound(X;)
end for
end

Inc-Bound(X)
Build flow problems forLy, ... (X) from top(Fmaz) andLy .,
Find APS,.(X) C {BS(X)UU(X)}

Liiaz(X) = 2y eqars,, cousooy V)

(X) from top(Fmin)

Find APy, (X) C {BS(X)UU(X)}
Lyin(X) = ve{ars, <X)UB(X>}C(V)

Build flow problems forL;, .. (X), L7, (X)
Find AP7,.(X) C {AS(X)UU(X})
Lae(X) =32

= VE{AP,?LQI(X)UB(X)UBS(X)US(X)}c(
FindAP_,.
L>

(X) c{AS(X)uU(X)}
min(X) = Zvemp;m<X)UB(X)UBS(X)US(X>} (V)
Push the flow solutions fak 5, (X) oNnto Fiq, @nd Ly, (X) oNnto Fiin,
end

V)

Fig. 7. A sketch of the Flow Balance Constraint implemented by using a Depth-First search
through the precedence graph and using an incremental approach to reduce computation time
for constructing the bounds.

Proof. Each leaf corresponds to a sequence suchXhat € {B(X;) U BS(X;) U
S(X;)}. Then, for each sequence, we can reuse the flow solutionstfne(®h,,..) and
top(Fimin) to solve eachX;; each chain cost®(MaxFlow(n,m)). Since there are

such chains, we’re done with this part of the proof. Since the longest chain is of length
[, we store at modtcopies of a flow problem on at mostnodes andr. edges.

The theory of partially ordered sets gives some bounds @mdi; Let W be the
partial order width and. be the partial order length of the partially ordered set induced
by the anti-precedence graph. For any DFS travetsat, W andl < L. However, it is
not obvious in general how to efficiently find a good event ordering.

7 Higher Order Balance Constraint

The quantitied ;.. (X), L;,..(X), L5, (X) andL: . (X) can be thought of aférst

order bounds on resource availability, in that they represent resource bounds before
and after one event. In this section we generalize these techniques in order to calculate
higher-order resource availability checks afteevents. To see why this is valuable,
consider Figure 8. Initially there are 2 units of resource available. We see that no first
order bound calculated by BC proves that this RTN is impossible to solve. However,
notice that we can show that theaximumavailable resource after bothand B have
occurred, which we denote’, ... (AA B), is —1. This corresponds to one of two sched-
ules: it is possible to either schedule < B or C' < A, but not both simultaneously.
Thus, without further search, we can prove that the HC is satisfied because no solution
exists.

This example shows that it may be valuable to perf@frorder checks on re-
source availability by determining resource availability immediately before and after

(a) Resource Temporal Network (b) 1st and 2d order Flow Balance Constraint

with 2 units of resource initially upper bounds. The second order bound
available. Lmax>(A"B) proves the NTC is violated.
3 3
ol I'max:(A)’ .
[1,10] ﬁ] _Lmi Lnax ©)]
<(1,10]-2> <[2,20]+1> max (©)

L. (AL ~(B
W[-] 10] 0l—= max () max () 0
’ ﬁ 0 1 Lyax (©)Lmay (D) 20 21

"“max
<[1,10],-2> <[2,20],+1>) S }
1 '_Lmax (AAB) —= 1

Fig. 8. An RTN for which F BC fails to prove that the HC is unsatisfied.

sets of2 events. We assume without loss of generality thatc U(Y'). In order to
do this for L5, ... (X A'Y) we must account for the following possibilities: neith&r
norY have occurredX has occurred but” has not, and vice versa. To find the max-
imum availability strictly before bothX andY we solve the flow problem over the
events of { BS(X)UU(X)} Nn{BS(Y)UU(Y)}}. We call the resulting set of events
APS .. (X xY). To find the maximum availability strictly beforg assumingX <Y
requires adding the constraint and recalculating the partitions of the anti-precedence
graph relative td”. We then solve the flow problem defined By’ (Y) U U’(Y') and
call the resulting sef\ Py, .. (X < Y'). To find the maximum availability strictly before
X assuming” < X proceeds similarly, and the resulting set is caliedls, . (Y < X).
We defineL;,,.(X AY) as

max

max Z e(V)

VE{APS 0o (X+Y)UB(X)NB(Y)}

Z (V)

VE{B/(Y)UAP . (X<Y)}

> (V)

VE{B/(X)UAPS .. (Y <X)}

andAPS,...(X AY) is the set of events defining the maximum.
For L. ..(X AY) we we must account for the following possibilitie&: andY

occurred at the same tim&, occurred beford”, and vice versa. These options account

for the possibility that, for example, eventsdf X)NU (Y') contribute tal. .. (X AY).

To find the maximum assuming = Y, we first solve the flow problem over the events

of {{AS(X)UU(X)}n{AS(Y)UU(Y)}}. We call the resulting sed P, (X =Y).

To find the maximum assuming < Y requires adding the constraint and recalculating

the partitions of the anti-precedence graph relativié tiVe solve the flow problem over

{AS"(Y)uU'(Y)}, and call the resulting set P, . (X < Y).andAP; . (X >Y)

is defined similarly. We defing;” . (X AY) as

max

max(Z (V)

VE(APZ .. (X=Y)UB(X)UBS(X)US(X)UB(Y)UBS(Y)US(Y)

14

VEB/(Y)UBS' (Y)US' (Y)UAPZ .., (X<Y)

> (V)

VEB/ (X)UBS (X)US'(X)UAPZ 40 (Y <X)

andAP, (X AY)is the set of events defining the maximum. The lower bounds
are calculated in a similar manner.

Let us see how this works in Figure 8. To fidg;,,, (A A B), note{{BS(4) U
UA)}IN{BS(B)UU(B)}} =0and{B(A)NB(B)} = 0. Thus,L%,,..(A* B) = 2,
which is achieved by assuming no event has taken place. Tdfind(4 < B), we
see thal/’(B) = D; the best schedule here.s D for an availability of1. Similarly,
tofind Ly, (B < A), we see that/'(A) = C; the best schedule herei C for an
availability of 1. Thus, Ly, ,.(X AY) = 2. To calculateL; . (A A B) we see that
AP; .. (A= B)=10,leadingtoL; ,.(A = B) = —2. However,AP; (A < B) =
D; this corresponds to the scheduleD, B, with the resultthal; .. (A < B) = —1,
and symmetricaly..> . (B < A) = —1. Thus,L;, .. (AA B) = —1.

The total complexity of the resulting naive algorithm for calculatB&rond order
Flow Balance ConstraintF’ BC?) is 22((n?) x (MaxFlow(n,m) +n?)). Then? term
comes from the fact that(n — 1) pairs of bounds must be calculated. The complexity
bounds obscure the fact thatlow problems must be solved per pair of events, and also
hides the fact that the precedence constraints must be recalculated for each constraint
imposed to set up the flow problems. Note, however, tais a very crude estimate
of the total number of bounds to compute.Afstrictly precedes3 then Py, (A A
B) = P5,.(B). Thus, the induced precedences vastly reduce the number of bounds
to calculate. Additionally, the sizes of the flow problems will generally be larger as
the number of events involved climbs. These factors make a more precise complexity
analysis difficult. Finally, it is likely that the incremental flow algorithm described in
[7] can be used to further reduce the complexity. It is sufficient for our purposes to
demonstrate that even tighter inferred constraints can be calculated in time polynomial
in the number of events considered. While we can generalize further to higher order
bounds, the apparent complexity even of the second order bounds makes it likely that

these higher order bounds will not be practical to compute.

8 Conclusions and Future Work

In this paper we have also shown how to exploit the featurds@fand E; to construct
FBC, atighter bound on the availability of resources for RTNs than either of the pre-
vious approaches. We have shown thd@C dominates botl; and BC' in terms of
the size of search trees generated under chronological backtracking search with a static
variable ordering, and that contrary to expectatidB€; and E£; do not strictly domi-
nate each other. We have described an incremental algotitiin; — D F'S that takes
advantage of incremental flow calculations by using a depth-first search traversal of the
anti-precedence graph. 4 is the number of leaves of the traversal dnd longest
path in the traversal, algorithtfiBC' — DF'S takesO (w *« M axz Flow(n,m)) time, and
takesO(Im) space. The technique generalize for calculafii®C leads to even tighter
bounds, but at sharply increased computational cost.

While we have proven dominance 6fBC, an empirical study will be necessary
to determine the relative value @&, BC and F BC for speeding up the solving of
scheduling problems. In particular, it is hecessary to determine how to generate good
orderings to optimize the performance BBC — DF'S. A second, equally impor-
tant empirical study will be necessary to shed light on how to integrate heuristics that
make use of the various bounds. Laborie [6] has built numerous such heuristi$s'for
However, such heuristics have complex interactions with the pruning power of the en-
velopes. It will likely be necessary to trade off between the pruning power and heuristic
predictiveness of the resource bounds to craft the best scheduling algorithm.

Changes to dominance criteria that we use are worth contemplating. A dominance
criteria for dynamic variable ordering based search would be handy but is complicated
due to the interaction of pruning techniques and heuristics. Dominance criteria for local
search based algorithms are also desirable. On the one hand, requiriag dbati-
natesB on R if Us(R) C Ug(R) is rather strong, and could be weakened, say, to
|[Us(R))| < |Ug(R))|. On the other hand, requiring thatdominatesB if 3R such
that A dominatesB on R and there exists n§ such thatB dominatesA on S is some-
what weak, and perhaps could be strengthened.

9 Acknowledgments

I would like to thank Ari dnsson and Nicola Muscettola for numerous discussions on
this topic. This work was funded by the NASA Intelligent Systems Program.

References

1. Muscettola, N.: Computing the envelope for stepwise-constant resource allocations. In:
Proceedings of th&'" International Conference on the Principles and Practices of Constraint
Programming. (2002) 139 —154

2. Laborie, P.: Resource temporal networks: Definition and complexity. In: Proceedings of the
18" International Joint Conference on Atrtificial Intelligence. (2003) 948 — 953

3. Dechter, R., Meiri, I., Pearl, J.: Temporal constraint networks. Atrtificial Intelligettce
(1991) 61-94

4. Jnsson, A., Morris, P., Muscettola, N., Rajan, K., Smith, B.: Planning in interplanetary
space: Theory and practice. In: Proceedings of the Fifth International Conference on Atrtifi-
cial Intelligence Planning and Scheduling. (2000)

5. Morris, P., Muscettola, N., Tsamardinos, |.: Reformulating temporal plans for efficient exe-
cution. In: Proceedings of ths*" National Conference on Artificial Intelligence. (1998)

6. Laborie, P.: Algorithms for propagating resource constraints in ai planning and scheduling:
Existing approaches and new results. Artificial Intelligehd8(2003) 151-188

7. Muscettola, N.: Incremental maximum flows for fast envelope computation. In: Proceedings
of the14*" International Conference on Automated Planning and Scheduling. (2004)

8. Chapman, D.: Planning for conjunctive goals. Artificial IntelligeB2€1987) 333 — 377

9. Kumar, T.K.S.: Incremental computation of resource-envelopes in producer-consumer mod-
els. In: Proceedings of th#" International Conference on the Principles and Practices of
Constraint Programming. (2003) 664 — 678

10. Ahuja, R., Magnanti, T., Orlin, J.: Network Flows. Prentice Hall (1993)

